Tìm m để phương trình có nghiệm

-

Tìm m để phương trình sau có nghiệm là một dạng toán thường gặp trong đề thi tuyển sinh vào lớp 10 môn Toán được ipes.vn biên soạn và chia sẻ tới các em. Dạng bài toán tìm m để phương trình sau có nghiệm chúng ta hay gặp trong các đề thi ôn thi vào lớp 10. Thông qua tài liệu này các em sẽ ôn tập kiến thức cũng như làm quen với nhiều dạng bài tập tìm m, từ đó chuẩn bị tốt cho kì thi học kì 1 lớp 9 cũng như ôn thi vào lớp 10 sắp tới. Dươi đây là đề thi vào lớp 10 các em tham khảo nhé


I. Nhắc lại về điều kiện để phương trình có nghiệm

1. Nghiệm của phương trình bậc nhất một ẩn

+ Để phương trình bậc nhất một ẩn ax + b = 0 có nghiệm khi a ≠ 0.

Bạn đang xem: Tìm m để phương trình có nghiệm

2. Nghiệm của phương trình bậc hai một ẩn

+ Để phương trình bậc hai một ẩn ax2 + bx + c = 0 có nghiệm khi

*

II. Bài tập tìm m để phương trình có nghiệm

Bài 1:Tìm m để phương trình -2x2 - 4x + 3 = m có nghiệm

Hướng dẫn:

Sử dụng điều kiện để phương trình bậc hai một ẩn có nghiệm để giải bài toán.

Lời giải:

-2x2 - 4x + 3 = m ⇔ -2x2 - 4x + 3 - m = 0

Để phương trình có nghiệm ⇔ ∆" > 0

*

Vậy với m ≤ 5 thì phương trình có -2x2 - 4x + 3 = m có nghiệm

Bài 2: Tìm m để phương trình x2 - 2(m + 1)x + m2 - 4m + 3 = 0 có nghiệm.


Hướng dẫn:

Sử dụng điều kiện để phương trình bậc hai một ẩn có nghiệm để giải bài toán.

Xem thêm: Biên Hòa Đi Tân Sơn Nhất - Taxi Biên Hòa Đi Sân Bay Tân Sơn Nhất Giá Rẻ

Lời giải:

Để phương trình x2 - 2(m + 1)x + m2 - 4m + 3 = 0 có nghiệm ⇔ ∆" ≥ 0

*

Vậy với

*
thì phương trình x2 - 2(m + 1)x + m2 - 4m + 3 = 0 có nghiệm

Bài 3: Chứng minh phương trình x2 + (m - 3)x - 3m = 0 luôn có nghiệm với mọi m.

Hướng dẫn:

Xét ∆ và chứng minh ∆ luôn dương với mọi tham số m, khi đó phương trình luôn có nghiệm.

Lời giải:

Ta có ∆ = (m - 3)2 - 4.1.(-3m) = m2 + 6m + 9 = (m + 3)2 ≥ 0 ∀ m

Vậy phương trình x2 + (m - 3)x - 3m = 0 luôn có nghiệm với mọi m

Bài 4: Tìm m để phương trình (m - 1)x2 - 2(m + 2)x + m + 2 = 0 có nghiệm

Hướng dẫn:

Do hệ số của biến x2 chứa tham số m nên ta phải chia thành hai trường hợp để giải bài toán.

Lời giải:

Bài toán chia thành 2 trường hợp

TH1: m - 1 = 0 ⇔ m = 1. Khi đó phương trình trở thành phương trình bậc nhất một ẩn

*

TH2: m - 1 ≠ 0 ⇔ m ≠ 1. Khi đó phương trình trở thành phương trình bậc hai một ẩn

*


Để phương trình có nghiệm ⇔ ∆" ≥ 0

*

Vậy với

*
thì phương trình (m - 1)x2 - 2(m + 2)x + m + 2 = 0 có nghiệm

III. Bài tập tự luyện tìm m để phương trình có nghiệm

Bài 1: Tìm các giá trị của m để các phương trình dưới đây có nghiệm

1,

*

2,

*

3,

*

4,

*

5,

*

6,

*

7,

*

8,

*

9,

*

10,

*

11,

*

12,

*

13,

*

14,

*

15,

*

Bài 2: Chứng minh rằng các phương trình dưới đây luôn có nghiệm với mọi m

1,

*

2,

*



Tìm m để phương trình sau có nghiệm được ipes.vn chia sẻ trên đây. Nhằm giúp các em làm quen với nhiều dạng đề tìm m để phương trình có nghiệm, thông qua đó đó củng cố kiến thức, chuẩn bị tốt cho kì thi vào lớp 10 sắp tới. Chúc các em học tốt, dưới đây là một số tài liệu lớp 9, các em tham khảo nhé


-----------------

Ngoài chuyên đề tìm m để phương trình có nghiệm, mời các bạn học sinh tham khảo thêm các đề thi học kì 2 các môn Toán, Văn, Anh, Lý, Hóa, ... và các đề thi tuyển sinh vào lớp 10 môn Toán mà chúng tôi đã sưu tầm và chọn lọc. Với bài tập về chuyên đề này giúp các bạn rèn luyện thêm kỹ năng giải đề và làm bài tốt hơn. Chúc các bạn học tốt!

Đặt câu hỏi về học tập, giáo dục, giải bài tập của bạn tại chuyên mục Hỏi đáp của ipes.vn
Hỏi - ĐápTruy cập ngay: Hỏi - Đáp học tập

Tham khảo thêm
Đánh giá bài viết
13 76.177
Chia sẻ bài viết
Tải về Bản in
Sắp xếp theo Mặc địnhMới nhấtCũ nhất
*
Thi vào lớp 10 môn Toán
Giới thiệuChính sáchTheo dõi chúng tôiTải ứng dụngChứng nhận
*